
the Water in the Soil – Part 2   
Geotechnical News, March 2011 

William E. Hodge, PEng, M.ASCE 

    

This is the second in a series of articles in which I 

am proposing a way of calculating the pore water 

pressure that comes about within a saturated 

granular soil while it is undergoing deformation. 

In the previous article I began the development 

and justification of this idea by showing that when 

a particle is falling through water there is a 

pressurized zone ahead of the particle, and 

suggested that the magnitude of this pressure 

front is somehow dependent on how far the 

particle had fallen through the water.  Then I 

ended with a prediction of what would be the rate 

of generation of water pressure in front of a solid 

sphere in a test to be carried out in the research 

laboratory at UBC under the kind auspices of 

Professor Vaid. 

Now here are those results and my interpretation 

of them.  Afterwards I'll go on to suggest what 

these findings say about liquefaction of saturated 

soils. 

Results of Test at UBC   

In Figure 5 the ragged blue line is a trace of the 

digitized record of weight against time measured 

at UBC for the fall of a 2 inch ball bearing.  The 

red curve is the weight predicted earlier.  The x-

axis shows time.  The y-axis shows the system 

weight, and where the line approaching from the 

left is hovering around zero. 

If you recall, the test setup that produced this 

trace (Part 1, Figure 3) has the ball suspended 

from an electromagnet below the water level in 

the cylinder; the load cell records the weight of all 

the hardware (cylinder, water, electromagnet and 

ball).  So the trace in Figure 5 is the weight of all 

components measured before, and for about a 

half second after the power to the electromagnet 

is cut, resulting in the ball being abruptly dropped 

to let it "free-fall" through the water column.  

Now, what the trace shows us is a sudden weight 

drop into negative values, and then, a subsequent  

 

 

Figure 5 : Digital results of UBC test 

gradual oscillating recovery of weight until, at the 

end of the trace, the readings go off-scale on both 

sides of zero.  The mechanical explanation for the 

shape of the trace shape is as follows. 

Immediately the ball is set loose the system 

records the complete loss of the buoyant weight 

of the steel ball.  Now that it's weight is no longer 

attached to the side of the cylinder, the cylinder 

itself which up to that point has been carrying 

that load in axial compression, reacts like a spring 

and begins bouncing up and down.  This vibration 

is seen as the cyclical waveforms superimposed 

on the record of the apparatus weight.  Anyway, 

looking past the superimposed waves, it can be 

seen clearly enough that within a short time the 

weight of the system comes climbing back 

towards its pre-release weight.  The excitement at 

the end of the trace is the crash when the ball 

runs into a sand buffer at the bottom of the 

cylinder.  These impact readings show up as short 

lines alternating at either side of the oscilloscope 

weight range. 

The waveforms due to system resonance are a bit 

of a nuisance and are a result of using a ball too 

big for the overall mass of the system.  Basically, 

in hindsight, the cylinder was too small for the 

size of the ball.  And also, apart from vibrations, I 

should think it likely there are boundary 

interference effects involved which contaminate 

the data.  So what is being done at the moment 

to remove these undesirable attributes is to build 

a much longer and wider cylinder where the water 



pressure ahead of the ball is measured with an 

array of pressure transducers distributed about 

the base.  Here, David Woeller of ConeTec has 

come to my aid by contracting Ron Dolling of 

Adara Systems to build this new apparatus, and 

most generously, donating it to this effort.  So 

more and better data is on its way.   

In any event, I believe there is already enough 

confirmation from the UBC results to answer the 

Three Beaker question, and to keep moving 

forward with this idea. 

Interpretation of UBC results 

As the load cell was set to read zero after all the 

objects contributing to the mass of the 

experimental setup were in place, any weight 

change subsequently showing up from this initial 

static condition would need to be explained in 

terms of a force arising out of the dynamic activity 

within the system.  So as I see it, what went on 

inside the cylinder to explain the recorded trace 

may be understood as follows.  

The instant the ball is released by the 

electromagnet its buoyant mass is set free in the 

gravitational field.  In consequence, being 

instantaneously exposed only to gravitational 

attraction it begins to accelerate at a rate of "g" 

towards the centre of the earth.  Therefore, since 

the ball is at this first instant in absolute free-fall 

there is no net acceleration acting on the mass to 

give it weight.  This situation can be expressed as  

Weight = m ( g – g ) = 0  

This is why the load cell suddenly loses 

awareness, or fails to perceive, the ball's 

existence at the instant the electromagnet drops 

it.  The next thing that happens – really it begins 

to happen simultaneously with the ball being set 

free - is that the ball starts to move downwards in 

response to gravity.   

Once relative motion is initiated between the two 

phases, the water becomes aware of the ball's 

presence and tries to obstruct its further intrusion.  

This is because, as a viscous fluid, the water 

opposes the cavity expansion imposed on it by the 

progress of the ball through its domain.  This 

opposing force we call hydraulic drag.  Now, and 

this is the essential point: In order to support 

these drag forces it is then necessary that the 

water below the ball provide an equal and 

opposite reaction.  It is this drag force reaction 

which shows up as increased weight on the load 

cell.  The only way the water can convey this load 

is by compressive pressure.  And I believe this is 

a clear example of the very same mechanism 

which accounts for excess pore water pressure in 

saturated soils.  

If there is enough open water below the falling 

ball it then becomes a competition between 

gravity and drag, the one trying to increase the 

speed of fall, the other trying to slow it down.  

And the drag force, being proportional to the 

square of the ball's velocity, is bound to win in the 

end.  With enough fall distance they come to a 

standoff when the speed of the ball reaches the 

point where the increasing drag forces rise to 

become equal to the buoyant weight of the ball.  

This familiar condition we know as Terminal 

Velocity [vT]. 

Terminal Velocity & Liquefaction 

In our line of business at present, we come across 

the concept of Terminal Velocity in the 

hydrometer test where Stokes' Law provides the 

relationship between small spheres and their vT 

values, thereby allowing us to calculate the size 

distribution of silts.  But now perhaps there is 

another more interesting use for it.  And that is as 

a criterion for liquefaction. 

I think that attaining relative velocities of vT for 

particular sized particles is a necessary condition 

for saturated soils composed of those particles to 

liquefy.  This is simply because at vT the entire 

buoyant weight of the particle has been 

transferred to the water, thus rendering it 

effectively weightless.  Weightless particles can 

have no frictional capacity because there is no 

normal force to impart to neighbouring particles.  

In essence, they have become dominated by the 

enveloping water, and functionally a part of the 

fluid.  In a word, liquefied. 

A consequence of this line of reasoning is that it is 

only uniformly graded soils that are prone to 

liquefaction.  This seems to be so because if 

different sizes were involved in the mix it is hard 

to imagine how they all could attain vT at the 

same time without moving past one another. 



For some time past I've been hoping to establish 

an axiom of saturated soil behaviour that says: 

Increasing pore water pressure is not the cause of 

failure – it is the result of failure.  In the particular 

case of the liquefaction-type failure discussed 

above that seems to be true.  This is because the 

triggering event in the sequence is the failure of 

the soil-structure to prevent a particle from 

falling.  It is only after the fall that water pressure 

begins to increase.  Whether that argument can 

be sustained in the more general case of non-

catastrophic soil-structure deformations I'll have 

to try and sort out as we go along.  

Answer to the Three Beaker Question 

This UBC lab test was designed to replicate the 

essential situation in the Three Beaker question, 

and that is, what weight would show up on the 

scales during collapse of the soil-structure?   

After this effort it seems the answer is that at the 

moment of collapse the weight drops.  It then 

gradually recovers.  And I suppose, as the grains 

come to rest again, for an instant at least, the 

weight could even increase a bit. 

How the Prediction was Made 

Despite the fact that apparatus resonance and 

boundary conditions obscured what would 

otherwise have been a clearer picture, I was quite 

happy with the comparison between the history of 

load cell output and the prediction. 

The prediction was made on the simple 

assumption that the weight shown on the scales 

would be equal to the resistance offered by the 

water to the falling ball.   

In Fluid Mechanics a hydrodynamic force is known 

to act in resistance to solids moving through 

fluids.  Our sister technology tells us how to 

determine the magnitude of that Drag Force [ FD ] 

for any relative velocity between the two phases 

(solid and liquid).  This force is calculated using 

their equation: 

FD  =  CD ρ A v2 / 2    

where: 

 

 

 

CD   Coefficient of Drag 

Ρ     mass density of fluid (water)  

A     equatorial area of the solid (ball)  

v     relative velocity of fluid and solid. 

Of these four variables "ρ" is virtually a constant 

(1000 N/m3 ) over the range of temperatures 

we're interested in.  We pick the value of "A", or 

rather, the diameter of the sphere we want to 

look at.  The relative velocity is the independent 

variable we want to track.   

For the moment I'll not show you the standard 

Fluid Mechanics way of presenting the range of 

values for CD, and I'm withholding it for two 

reasons.  First, it is such an ugly looking log-log 

plot related to that rather obscure hydraulic 

leveller, the Reynolds Number, that I'm afraid any 

interest the normal geotechnical reader might 

have in this idea would evaporate on the spot.  

Secondly, in the next article I will propose what I 

believe to be a better, more intuitively acceptable, 

way for us to view CD.  This "geotechnical" version 

of the Hunter Rouse relationship, while giving the 

same values as the original for the spherical solids 

I'm dealing with here, also opens a door to 

important insights into other hydrodynamic 

aspects of Soil Mechanics. 

Using the above equation I wrote a simple 

computer program ("BALLFALL.exe") to determine 

the position of the ball, and the force acting on it 

at any time I wanted during its progress from 

stationary to Terminal Velocity.  That's where the 

data for the red curve comes from.  This program 

is freely available from Geotechnical News for 

anyone who wants it. 

The conclusion I draw from the reasonable 

correspondence between the test readings and 

the calculated values is that the water in front of 

the moving solid carries a compressive force 

which is just about equal to the drag resistance 

offered by the water to the moving particle.  

Furthermore, I believe this reveals the actual 

physical mechanism of pore water generation 

within saturated soils experiencing deformation.   

Pore pressure generation is simply a matter of 

hydrodynamics.  And when you think about it, 

how could it be otherwise ? 

 



What this Approach says about Liquefaction 

The program BALLFALL does the calculations 

needed to construct the curve in Figure 6.  This 

relationship is for a spherical particle of specific 

gravity 2.65 falling through 20° C water.  The x-

axis covers the range of diameters of interest to 

us.  The y-axis gives the amount of fall required 

to transfer 99% of the particle's weight to the 

water; for convenience this value is shown in 

terms of the ratio of the fall distance to the 

particle diameter.  

 

Figure 6 : Weight transfer for fall distance 

The ratio 0.29 is highlighted because it is 

theoretically a readily achievable amount of fall.  

This is the amount of free drop which is available 

when the idealized loose packing of spheres 

contracts to the stable dense packing, involving a 

void ratio change from 0.91 to 0.35.  And this 

geometric fact immediately suggests an 

interesting proposition: If this same density 

change were suddenly brought about in a 

saturated fine rounded sand by some triggering 

event, then the condition necessary for 

liquefaction of the mass would exist during the 

transformation. 

Although I intend to limit myself to dealing with 

manageable geometric shapes I should say here 

that I think the more angular shapes of natural 

grains make them more vulnerable to this effect, 

and this is because of the larger voids that can 

exist between less rounded particles.  So on this 

basis I don't have difficulty in thinking very loose 

sand-sized deposits, for instance, pro-glacial 

sands, or some dredged fills, could very easily 

liquefy once the saturated soil-structure gets a 

serious jolt, or more to the point, as I discuss in a 

later article, is exposed to a surface wave. 

Looking further along the x-axis of Figure 6 to the 

coarse sand and gravel size range you can see 

that the ratio of fall-to-diameter is above 10.  This 

implies that a  gravel, of say 1 inch size, would 

need to find an open space of about 10 inches 

depth beneath it to fully shed its weight, and 

thereby, its frictional capacity.  It is very difficult 

for me to imagine any geotechnical 

circumstances, whether natural or artificial, where 

almost a foot of open space could exist in a gravel 

deposit.  This tells me that the idea of gravel size 

deposits liquefying is unreasonable.  Of course in 

the case of a debris flow, that's quite another 

matter, and one which I hope to return to later in 

this series. 

Along the same line of reasoning, how a well 

graded deposit of any type could liquefy I find 

quite unimaginable.  Even if the finer particles 

found room to lose their weight these would entail 

only a small loss of the general frictional capacity, 

the loss being proportional to the relative volume 

they contributed to the overall soil mass.  Within 

such an aggregate there is just nowhere the 

larger particles could drop unhindered. 

Summary of Practical Implication   

What the foregoing hydrodynamic line of 

reasoning says to me about liquefaction is that: 

It is easy enough to understand how loose fine 

sands can liquefy. 

It is difficult to imagine how gravel sizes could be 

brought to liquefaction either as a natural deposit, 

or as a construction fill, however poorly placed. 

It is even more difficult to figure out how well 

graded materials of any density could manage to 

fail in this manner. 

But a very interesting question arises and remains 

to be answered, and that is about silts.  If this line 

of reasoning is valid, then: Why aren't silts even 

more prone to liquefy than sands?  Figure 6 

suggests they scarcely need to budge at all to 

reach their vT. 

 



In the Next Article 

The next step in the development of this method 

of looking at the interaction of water and discrete 

solids is to show how CD can be viewed as a 

geotechnical parameter.  It is at this stage that an 

answer to the question of silt's apparently 

inexplicable behaviour will be first broached.   

I will also provide values for the "L-factor" which 

is the first of two variables entering into the 

calculation of pore water pressure magnitude.  

The derivation of the L-factor is simple and 

straightforward.  I will leave until a later article 

the more complicated development of what I call 

the "Crowding Factor".  This K-factor is necessary 

to extend the implications of single discrete 

particle movements, presented so far in relation 

to liquefaction, into the much broader realm of 

real soils undergoing non-catastrophic 

deformations. 


